269 research outputs found

    A counterexample to the triangle conjecture

    Get PDF
    AbstractThe triangle conjecture sets a bound on the cardinality of a code formed by words of the form aibaj. A counterexample exceeding that bound is given. This also disproves a stronger conjecture that every code is commutatively equivalent to a prefix code

    A lower bound for the length of a partial transversal in a latin square

    Get PDF
    AbstractIt is proved that every n × n Latin square has a partial transversal of length at least n − 5.53(log n)2

    The Equivalence of Sampling and Searching

    Get PDF
    In a sampling problem, we are given an input x, and asked to sample approximately from a probability distribution D_x. In a search problem, we are given an input x, and asked to find a member of a nonempty set A_x with high probability. (An example is finding a Nash equilibrium.) In this paper, we use tools from Kolmogorov complexity and algorithmic information theory to show that sampling and search problems are essentially equivalent. More precisely, for any sampling problem S, there exists a search problem R_S such that, if C is any "reasonable" complexity class, then R_S is in the search version of C if and only if S is in the sampling version. As one application, we show that SampP=SampBQP if and only if FBPP=FBQP: in other words, classical computers can efficiently sample the output distribution of every quantum circuit, if and only if they can efficiently solve every search problem that quantum computers can solve. A second application is that, assuming a plausible conjecture, there exists a search problem R that can be solved using a simple linear-optics experiment, but that cannot be solved efficiently by a classical computer unless the polynomial hierarchy collapses. That application will be described in a forthcoming paper with Alex Arkhipov on the computational complexity of linear optics.Comment: 16 page

    Improving Quantum Query Complexity of Boolean Matrix Multiplication Using Graph Collision

    Full text link
    The quantum query complexity of Boolean matrix multiplication is typically studied as a function of the matrix dimension, n, as well as the number of 1s in the output, \ell. We prove an upper bound of O (n\sqrt{\ell}) for all values of \ell. This is an improvement over previous algorithms for all values of \ell. On the other hand, we show that for any \eps < 1 and any \ell <= \eps n^2, there is an \Omega(n\sqrt{\ell}) lower bound for this problem, showing that our algorithm is essentially tight. We first reduce Boolean matrix multiplication to several instances of graph collision. We then provide an algorithm that takes advantage of the fact that the underlying graph in all of our instances is very dense to find all graph collisions efficiently

    A family of sure-success quantum algorithms for solving a generalized Grover search problem

    Get PDF
    This work considers a generalization of Grover's search problem, viz., to find any one element in a set of acceptable choices which constitute a fraction f of the total number of choices in an unsorted data base. An infinite family of sure-success quantum algorithms are introduced here to solve this problem, each member for a different range of f. The nth member of this family involves n queries of the data base, and so the lowest few members of this family should be very convenient algorithms within their ranges of validity. The even member {A}_{2n} of the family covers ever larger range of f for larger n, which is expected to become the full range 0 infinity.Comment: 8 pages, including 4 figures in 4 page

    Correcting the effects of spontaneous emission on cold trapped ions

    Get PDF
    We propose two quantum error correction schemes which increase the maximum storage time for qubits in a system of cold trapped ions, using a minimal number of ancillary qubits. Both schemes consider only the errors introduced by the decoherence due to spontaneous emission from the upper levels of the ions. Continuous monitoring of the ion fluorescence is used in conjunction with selective coherent feedback to eliminate these errors immediately following spontaneous emission events, and the conditional time evolution between quantum jumps is removed by symmetrizing the quantum codewords.Comment: 19 pages; 2 figures; RevTex; The quantum codewords are extended to achieve invariance under the conditional time evolution between jump

    Decoherence of geometric phase gates

    Get PDF
    We consider the effects of certain forms of decoherence applied to both adiabatic and non-adiabatic geometric phase quantum gates. For a single qubit we illustrate path-dependent sensitivity to anisotropic noise and for two qubits we quantify the loss of entanglement as a function of decoherence.Comment: 4 pages, 3 figure

    Quantum Probabilistic Subroutines and Problems in Number Theory

    Full text link
    We present a quantum version of the classical probabilistic algorithms aˋ\grave{a} la Rabin. The quantum algorithm is based on the essential use of Grover's operator for the quantum search of a database and of Shor's Fourier transform for extracting the periodicity of a function, and their combined use in the counting algorithm originally introduced by Brassard et al. One of the main features of our quantum probabilistic algorithm is its full unitarity and reversibility, which would make its use possible as part of larger and more complicated networks in quantum computers. As an example of this we describe polynomial time algorithms for studying some important problems in number theory, such as the test of the primality of an integer, the so called 'prime number theorem' and Hardy and Littlewood's conjecture about the asymptotic number of representations of an even integer as a sum of two primes.Comment: 9 pages, RevTex, revised version, accepted for publication on PRA: improvement in use of memory space for quantum primality test algorithm further clarified and typos in the notation correcte

    Partition-function zeros of spherical spin glasses and their relevance to chaos

    Get PDF
    We investigate partition-function zeros of the many-body interacting spherical spin glass, the so-called pp-spin spherical model, with respect to the complex temperature in the thermodynamic limit. We use the replica method and extend the procedure of the replica symmetry breaking ansatz to be applicable in the complex-parameter case. We derive the phase diagrams in the complex-temperature plane and calculate the density of zeros in each phase. Near the imaginary axis away from the origin, there is a replica symmetric phase having a large density. On the other hand, we observe no density in the spin-glass phases, irrespective of the replica symmetry breaking. We speculate that this suggests the absence of the temperature chaos. To confirm this, we investigate the multiple many-body interacting case which is known to exhibit the chaos effect. The result shows that the density of zeros actually takes finite values in the spin-glass phase, even on the real axis. These observations indicate that the density of zeros is more closely connected to the chaos effect than the replica symmetry breaking.Comment: 22 pages, 8 figure

    No-relationship between impossibility of faster-than-light quantum communication and distinction of ensembles with the same density matrix

    Full text link
    It has been claimed in the literature that impossibility of faster-than-light quantum communication has an origin of indistinguishability of ensembles with the same density matrix. We show that the two concepts are not related. We argue that: 1) even with an ideal single-atom-precision measurement, it is generally impossible to produce two ensembles with exactly the same density matrix; or 2) to produce ensembles with the same density matrix, classical communication is necessary. Hence the impossibility of faster-than-light communication does not imply the indistinguishability of ensembles with the same density matrix.Comment: 4 pages and 3 figure
    • 

    corecore